Bayesian numerical inference for markovian models . Application to tropical forest dynamics

نویسندگان

  • Fabien Campillo
  • Rivo Rakotozafy
  • Vivien Rossi
چکیده

Abstract. Bayesian modelling is fluently employed to assess natural ressources. It is associated with Monte Carlo Markov Chains (MCMC) to get an approximation of the distribution law of interest. Hence in such situations it is important to be able to propose N independent realizations of this distribution law. We propose a strategy for making N parallel Monte Carlo Markov Chains interact in order to get an approximation of an independent N-sample of a given target law. In this method each individual chain proposes candidates for all other chains. We prove that the set of interacting chains is itself a MCMC method for the product of N target measures. Compared to independent parallel chains this method is more time consuming, but we show through example that it possesses many advantages. This approach will be applied to a forest dynamic model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model

Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability o...

متن کامل

A One-Stage Two-Machine Replacement Strategy Based on the Bayesian Inference Method

In this research, we consider an application of the Bayesian Inferences in machine replacement problem. The application is concerned with the time to replace two machines producing a specific product; each machine doing a special operation on the product when there are manufacturing defects because of failures. A common practice for this kind of problem is to fit a single distribution to the co...

متن کامل

Cost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors

Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010